Isotropic Slags

$$
x=F l(n) \text { fire } \mathbb{C}^{n}
$$

$V_{.}=\left\{0 \subset V_{1} \subset V_{2} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n}\right\} \quad V_{i}$ has dim i
Connetely: $B_{-} \backslash G L(n)$
lover triangular mativios
downward row operations

$$
\begin{aligned}
& A=\left[\begin{array}{llll}
* & 1 & 0 & 0 \\
* & 0 & * & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& A \leftrightarrow A, \quad A_{1}=\langle *, 1,0,0\rangle \\
& \leftrightarrow A \text { pan of top ; rows }
\end{aligned}
$$

Notice: rep each fley with echelon matrix

$$
\omega=2413
$$

locus of all flogs with permutation w is called Schubat call. \dot{X}_{ω} Clomene X_{w} is called "Schubert variety" X_{w}

Facts: $\dot{X}_{w} \cong A^{l(\omega)} \quad$ length of $\omega \cdot l(\omega)$ is the umber of inversions

$$
2 \overrightarrow{4} 13 \text { so } l(w)=3
$$

Stratification!
Fact: "affine stratification" \rightarrow generate Chow ring Another way: Fire flog... have e_{1}, \cdots, e_{n} stamdond tais

$$
\begin{gathered}
0<\left\langle e_{1}\right\rangle c\left\langle e_{1}, e_{2}\right\rangle c\left\langle e_{1}, e_{1}, e_{1}\right\rangle c \cdots \\
\dot{X}_{w}=\left\{L, \epsilon F l(n) \operatorname{dim}\left(\operatorname{lp} \cap E_{q}\right)=\#\{i \leqslant p \cdot \omega(i) \leqslant q\}\right\} \\
\hat{\imath}=\left\langle e_{1}, \cdots, e_{i}\right\rangle
\end{gathered}
$$

To get $X_{w}, t_{\text {wo }} "="$ itu $" \geq$ "

$$
F_{l(n)}=B_{-} \backslash G L(n) \longrightarrow A_{n}
$$

「×(n)

Can generalize to "Classical groups"
Symplectic gps $\rightarrow C_{n}$
Oithugaral gps $\rightarrow B_{2}, D_{n}$
Type C_{n} - Sympletic form
Skersism form $\langle v, w\rangle=-\langle w, u\rangle$
mondegenerate - nothing nonzero that's \perp to erectyting
Symplactic $g_{p}=$ matrices $f(x<,>$
Define $<, \cdots$ on $\mathbb{C}^{2 n}$

$$
\begin{array}{ll}
\left\langle e_{1}, e_{2 n+1-i}\right\rangle=1 & i \leq n \\
\left\langle e_{1}, e_{2 n+1-i}\right\rangle=-1 & i>n
\end{array} \quad\left(\begin{array}{c|c}
0 & 1 \\
\hline-1 & 0
\end{array}\right)
$$

Subspace V of $\mathbb{1}^{2 n}$ is isotropic u.r.t. $<,>$

$$
\text { if }\langle u, v\rangle=0 \text { for } u, v \in V
$$

for $V \subseteq \mathbb{1}^{2 n}$ dim k

$$
\operatorname{dim}\left(V^{\perp}\right)=2 n-k
$$

\Rightarrow All maximal isotropic subppaes have din n.
Maximal isotropic flag is $\underbrace{0 \subset V_{1} \subset V_{2} \subset \cdots V_{n}}_{V_{\text {. }}}$ all iso

$$
B_{-} \backslash S_{p}(z n)
$$

Note: can extend V. to complete flay uniquely by setting $V_{2 n+1-i}=V_{i}^{\frac{1}{1}}$
Weyl grow, of type C_{n}

$$
\begin{aligned}
& w_{n}^{c}=\left\{w \in S_{m}: \omega(i)+w(2 n+1-i)=2 n+1\right\} \\
& E^{\prime} x: \omega=4321 \quad \begin{array}{ll}
4+1.5 \\
3+2.05
\end{array} \\
& n=2 \quad\left[\begin{array}{llll}
a & b & c & 1 \\
t & d & 1 & 0
\end{array}\right] \text { wows are } \perp \text { inter prolut is } 0 \\
& \Rightarrow t=b-c a l \\
& \text { sn } r^{*} * 17
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow t=b-c a l \\
\operatorname{so}\left[\begin{array}{llll}
* & *: & 1 \\
0 & * & 1 & 0
\end{array}\right]
\end{gathered}
$$

Can always mite matrix charts is "opposite" pivot 1's in higher rows once fix i's, t's give afire coors

$$
\begin{aligned}
\ell(w)= & \#\{i<j \leqslant n: w(i)>w(j)\} \\
& +\#\{i \leqslant j \leqslant n: w(i)+w(j)>2 n+1\}
\end{aligned}
$$

get $*$ ir row i
"opposite "ova)

